metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic3⋊3D4, C23.14D6, (C2×C6)⋊3D4, (C2×D4)⋊5S3, (C6×D4)⋊9C2, D6⋊C4⋊15C2, C3⋊5(C4⋊D4), (C2×C4).19D6, C6.51(C2×D4), C2.27(S3×D4), Dic3⋊C4⋊15C2, C6.32(C4○D4), C22⋊2(C3⋊D4), (C2×C6).54C23, C6.D4⋊12C2, (C2×C12).62C22, (C22×Dic3)⋊6C2, C2.18(D4⋊2S3), C22.61(C22×S3), (C22×C6).21C22, (C22×S3).11C22, (C2×Dic3).38C22, (C2×C3⋊D4)⋊6C2, C2.15(C2×C3⋊D4), SmallGroup(96,146)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.14D6
G = < a,b,c,d,e | a2=b2=c2=d6=1, e2=c, ab=ba, dad-1=ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 226 in 94 conjugacy classes, 35 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4⋊D4, Dic3⋊C4, D6⋊C4, C6.D4, C22×Dic3, C2×C3⋊D4, C6×D4, C23.14D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, S3×D4, D4⋊2S3, C2×C3⋊D4, C23.14D6
Character table of C23.14D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 12 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√-3 | 1 | -1 | √-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √-3 | -1 | 1 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √-3 | 1 | -1 | -√-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√-3 | -1 | 1 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(1 13)(2 44)(3 15)(4 46)(5 17)(6 48)(7 33)(8 24)(9 35)(10 20)(11 31)(12 22)(14 38)(16 40)(18 42)(19 29)(21 25)(23 27)(26 32)(28 34)(30 36)(37 43)(39 45)(41 47)
(1 33)(2 34)(3 35)(4 36)(5 31)(6 32)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(19 39)(20 40)(21 41)(22 42)(23 37)(24 38)(25 47)(26 48)(27 43)(28 44)(29 45)(30 46)
(1 37)(2 38)(3 39)(4 40)(5 41)(6 42)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 35)(20 36)(21 31)(22 32)(23 33)(24 34)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6 37 42)(2 41 38 5)(3 4 39 40)(7 18 27 48)(8 47 28 17)(9 16 29 46)(10 45 30 15)(11 14 25 44)(12 43 26 13)(19 20 35 36)(21 24 31 34)(22 33 32 23)
G:=sub<Sym(48)| (1,13)(2,44)(3,15)(4,46)(5,17)(6,48)(7,33)(8,24)(9,35)(10,20)(11,31)(12,22)(14,38)(16,40)(18,42)(19,29)(21,25)(23,27)(26,32)(28,34)(30,36)(37,43)(39,45)(41,47), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(19,39)(20,40)(21,41)(22,42)(23,37)(24,38)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,35)(20,36)(21,31)(22,32)(23,33)(24,34), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,18,27,48)(8,47,28,17)(9,16,29,46)(10,45,30,15)(11,14,25,44)(12,43,26,13)(19,20,35,36)(21,24,31,34)(22,33,32,23)>;
G:=Group( (1,13)(2,44)(3,15)(4,46)(5,17)(6,48)(7,33)(8,24)(9,35)(10,20)(11,31)(12,22)(14,38)(16,40)(18,42)(19,29)(21,25)(23,27)(26,32)(28,34)(30,36)(37,43)(39,45)(41,47), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(19,39)(20,40)(21,41)(22,42)(23,37)(24,38)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,35)(20,36)(21,31)(22,32)(23,33)(24,34), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,18,27,48)(8,47,28,17)(9,16,29,46)(10,45,30,15)(11,14,25,44)(12,43,26,13)(19,20,35,36)(21,24,31,34)(22,33,32,23) );
G=PermutationGroup([[(1,13),(2,44),(3,15),(4,46),(5,17),(6,48),(7,33),(8,24),(9,35),(10,20),(11,31),(12,22),(14,38),(16,40),(18,42),(19,29),(21,25),(23,27),(26,32),(28,34),(30,36),(37,43),(39,45),(41,47)], [(1,33),(2,34),(3,35),(4,36),(5,31),(6,32),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(19,39),(20,40),(21,41),(22,42),(23,37),(24,38),(25,47),(26,48),(27,43),(28,44),(29,45),(30,46)], [(1,37),(2,38),(3,39),(4,40),(5,41),(6,42),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,35),(20,36),(21,31),(22,32),(23,33),(24,34)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6,37,42),(2,41,38,5),(3,4,39,40),(7,18,27,48),(8,47,28,17),(9,16,29,46),(10,45,30,15),(11,14,25,44),(12,43,26,13),(19,20,35,36),(21,24,31,34),(22,33,32,23)]])
C23.14D6 is a maximal subgroup of
C42.102D6 C42.104D6 C42⋊14D6 Dic6⋊23D4 C42⋊19D6 C42.118D6 C42.119D6 C24.67D6 C24⋊8D6 C24.44D6 C24.45D6 C24.46D6 C24.47D6 C12⋊(C4○D4) C6.322+ 1+4 Dic6⋊19D4 Dic6⋊20D4 C6.342+ 1+4 S3×C4⋊D4 C6.372+ 1+4 C6.722- 1+4 C6.402+ 1+4 C6.422+ 1+4 C6.442+ 1+4 C6.452+ 1+4 C6.462+ 1+4 C6.1152+ 1+4 C6.472+ 1+4 C6.482+ 1+4 C6.492+ 1+4 C4⋊C4.197D6 C6.1212+ 1+4 C6.822- 1+4 C6.642+ 1+4 C6.652+ 1+4 C6.662+ 1+4 C6.852- 1+4 C6.692+ 1+4 C42.137D6 C42.138D6 C42⋊22D6 C42.145D6 C42⋊28D6 Dic6⋊11D4 C42.168D6 C42⋊30D6 D4×C3⋊D4 C24⋊12D6 C24.53D6 C6.1042- 1+4 C6.1452+ 1+4 (C2×C12)⋊17D4 C6.1082- 1+4 Dic9⋊D4 C62.55C23 Dic3⋊D12 C62.112C23 C62.113C23 C62⋊6D4 C62⋊7D4 C62⋊14D4 Dic3⋊S4 Dic15⋊D4 Dic3⋊D20 (C6×D5)⋊D4 Dic15⋊3D4 (C2×C6)⋊D20 Dic15⋊18D4 Dic15⋊12D4
C23.14D6 is a maximal quotient of
C24.55D6 C24.15D6 C24.17D6 C24.20D6 C24.24D6 C24.60D6 C24.25D6 C24.27D6 Dic3⋊(C4⋊C4) (C2×C12).54D4 D6⋊C4⋊7C4 (C2×C12).56D4 C3⋊C8⋊22D4 C4⋊D4⋊S3 C3⋊C8⋊23D4 C3⋊C8⋊5D4 C3⋊C8⋊24D4 C3⋊C8⋊6D4 C3⋊C8.29D4 C3⋊C8.6D4 Dic3⋊D8 (C6×D8).C2 Dic3⋊3SD16 Dic3⋊5SD16 (C3×D4).D4 (C3×Q8).D4 Dic3⋊3Q16 (C2×Q16)⋊S3 M4(2).D6 M4(2).13D6 M4(2).15D6 M4(2).16D6 C24.29D6 C24.31D6 C24.32D6 Dic9⋊D4 C62.55C23 Dic3⋊D12 C62.112C23 C62.113C23 C62⋊6D4 C62⋊7D4 C62⋊14D4 Dic15⋊D4 Dic3⋊D20 (C6×D5)⋊D4 Dic15⋊3D4 (C2×C6)⋊D20 Dic15⋊18D4 Dic15⋊12D4
Matrix representation of C23.14D6 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 11 | 9 |
0 | 0 | 4 | 2 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 12 | 12 |
0 | 0 | 1 | 0 |
0 | 12 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 12 | 12 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,12,0,0,0,0,11,4,0,0,9,2],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,12,1,0,0,12,0],[0,1,0,0,12,0,0,0,0,0,12,0,0,0,12,1] >;
C23.14D6 in GAP, Magma, Sage, TeX
C_2^3._{14}D_6
% in TeX
G:=Group("C2^3.14D6");
// GroupNames label
G:=SmallGroup(96,146);
// by ID
G=gap.SmallGroup(96,146);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,218,188,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^6=1,e^2=c,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations
Export